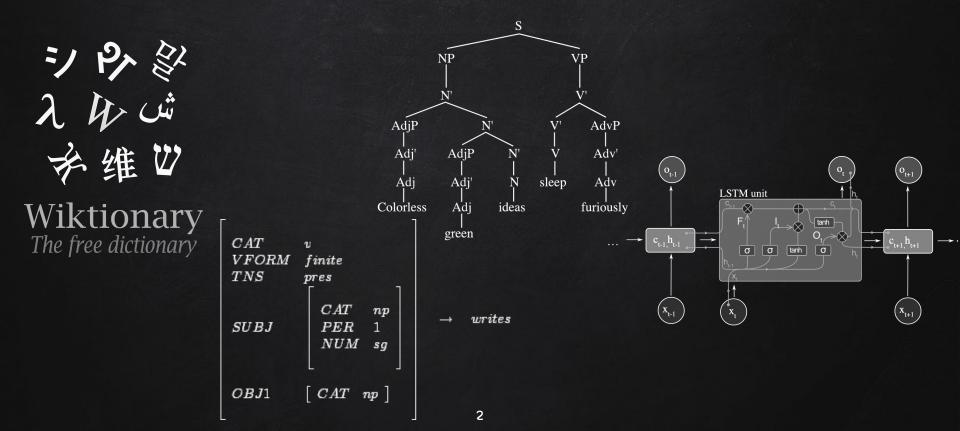
Robust evaluation of language-brain encoding experiments

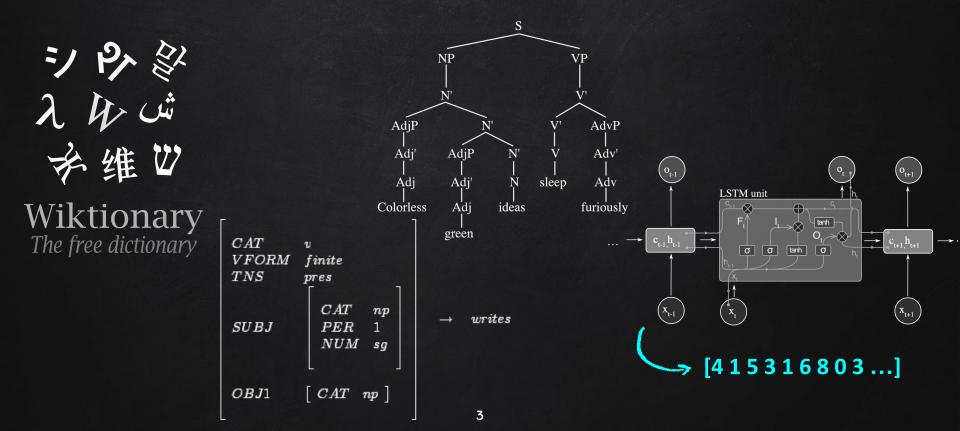
Lisa Beinborn, Samira Abnar, Rochelle Choenni Institute for Logic, Language and Computation Universiteit van Amsterdam

Cognitively inspired Language Processing

HOW TO MODEL LANGUAGE?



HOW TO MODEL LANGUAGE?



WHICH ONE?

HIERARCHICAL

CONTEXTUALIZED

LONG SHORT-TERM NETWORK

MULTILINGUAL

ATTENTION CHARACTER UNIVERSAL CONVOLUTION STACKED

TRANSFORMER

BIDIRECTIONAL

										-
Model	Avg	Single S CoLA	Sentence SST-2	Similarity and Paraphrase MRPC QQP STS-B		Natural Language Infer MNLI QNLI RTE			ence WNLI	
Single-Task Training										
BiLSTM	62.0	15.7	85.9	69.3/79.4	81.7/61.4	66.0/62.8	70.3/70.8	60.8	52.8	62.3
+ELMo	66.2	35.0	90.2	69.0/80.8	85.7/65.6	64.0/60.2	72.9/73.4	69.4	50.1	65.1
+CoVe	62.4	14.5	88.5	73.4/81.4	83.3/59.4	67.2/64.1	64.5/64.8	64.8	53.5	61.6
+Attn	60.0	15.7	85.9	68.5/80.3	83.5/62.9	59.3/55.8	74.2/73.8	51.9	51.9	55.5
+Attn, ELMo	64.8	35.0	90.2	68.8/80.2	86.5/66.1	55.5/52.5	76.9/76.7	61.1	50.4	65.1
+Attn, CoVe	60.8	14.5	88.5	68.6/79.7	84.1/60.1	57.2/53.6	71.6/71.5	53.8	52.7	64.4
				Multi	-Task Trainin	g				
BiLSTM	63.5	24.0	85.8	71.9/82.1	80.2/59.1	68.8/67.0	65.8/66.0	71.1	46.8	63.7
+ELMo	64.8	27.5	89.6	76.2/83.5	78.5/57.8	67.0/65.9	67.1/68.0	66.7	55.7	62.3
+CoVe	62.2	16.2	84.3	71.8/80.0	82.0/59.1	68.0/67.1	65.3/65.9	70.4	44.2	65.1
+Attn	65.7	0.0	85.0	75.1/83.7	84.3/63.6	73.9/71.8	72.2/72.1	82.1	61.7	63.7
+Attn, ELMo	69.0	18.9	91.6	77.3/83.5	85.3/63.3	72.8/71.1	75.6/75.9	81.7	61.2	65.1
+Attn, CoVe	64.3	19.4	83.6	75.2/83.0	84.9/61.1	72.3/71.1	69.9/68.7	78.9	38.3	<u>65.1</u>
			Pre-T	rained Senter	nce Represen	tation Model	ls			
CBoW	58.9	0.0	80.0	73.4/81.5	79.1/51.4	61.2/58.7	56.0/56.4	75.1	54.1	62.3
Skip-Thought	61.5	0.0	81.8	71.7/80.8	82.2/56.4	71.8/69.7	62.9/62.8	74.7	53.1	65.1
InferSent	64.7	4.5	85.1	74.1/81.2	81.7/59.1	75.9/75.3	66.1/65.7	79.8	58.0	65.1
DisSent	62.1	4.9	83.7	74.1/81.7	82.6/59.5	66.1/64.8	58.7/59.1	75.2	56.4	65.1
GenSen	66.6	7.7	83.1	76.6/83.0	82.9/59.8	79.3/79.2	71.4/71.3	82.3	59.2	65.1

TASKS

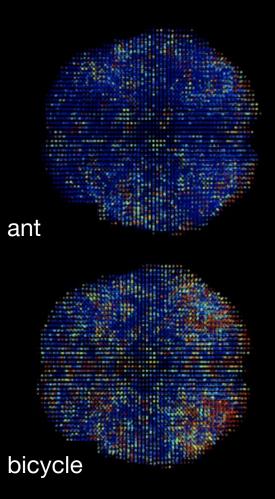
Table 3: Baseline performance on the GLUE tasks. For MNLI, we report accuracy on the matched and mismatched test sets. For MRPC and Quora, we report accuracy and F1. For STS-B, we report Pearson and Spearman correlation. For CoLA, we report Matthews correlation. For all other tasks we report accuracy. All values are scaled by 100. A similar table is presented on the online platform.

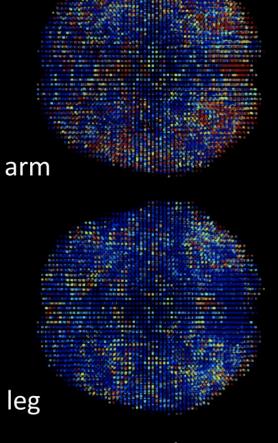
Wang et al, (2018): GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding

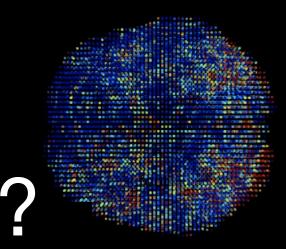
SAME SAME BUT DIFFERENT?

- Why is one model better than another?
- How do the representations differ?
- Which linguistic properties are encoded?
- Which phenomena cannot be modeled?
- How are they different from human language processing?

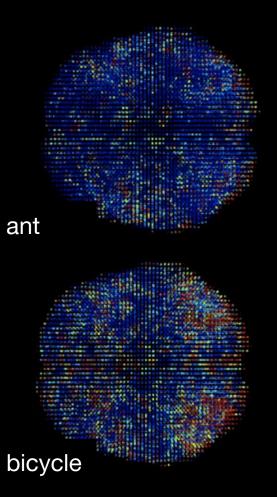
COMPARE COMPUTATIONAL MODELS WITH THE SIGNAL THAT WE MEASURE WHEN HUMANS PROCESS LANGUAGE.

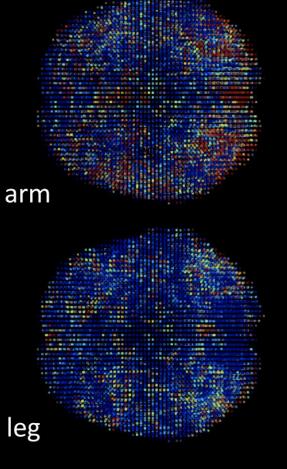


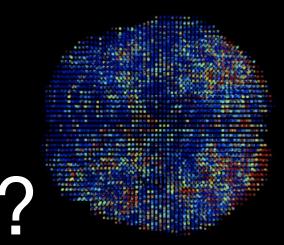




Data: Mitchell et al. 2008 Visualization: Samira Abnar



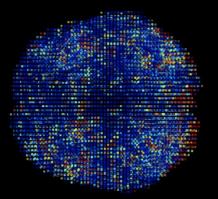




Hand or foot?

Data: Mitchell et al. 2008 Visualization: Samira Abnar

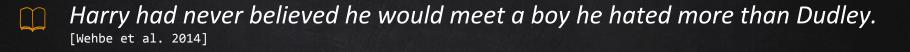
LEARN MAPPING MODEL



cat: [26813100...]

WHAT'S NEXT?

WORDS IN



A few weeks ago, a man I hardly know wrote me a really sweet love letter. [Dehghani et al. 2017]

Alice was beginning to get very tired of sitting by her sister on the bank. [Brennan et al. 2016]

DOES THAT WORK?

WE DON'T REALLY NOW ...

Researchers use

• different datasets

- different datasets
- different encoding models

- different datasets
- different encoding models
- different experimental parameters

- different datasets
- different encoding models
- different experimental parameters
- different evaluation metrics

- different datasets
- different encoding models
- different experimental parameters
- different evaluation metrics
- no comparison to baseline

Researchers use

- different datasets
- different encoding models
- different experimental parameters
- different evaluation metrics
- no comparison to baseline

AND THEY ARE OFTEN NOT VERY TRANSPARENT ABOUT THE DIFFERENCES: NO DATA, NO CODE

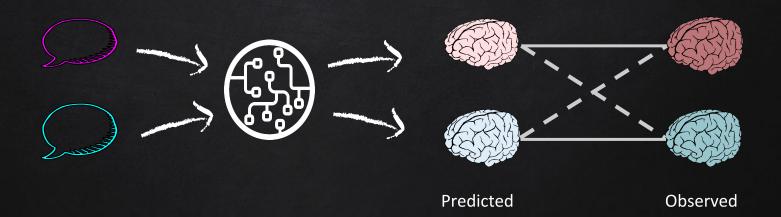
OUR APPROACH

We use

- 4 datasets
- Constant encoding model
- Constant experimental parameters (if possible)
- Multiple evaluation metrics
- Comparison to a baseline with a "random language model"

We tried to standardize the procedure as much as possible and publish the experimental framework on github.

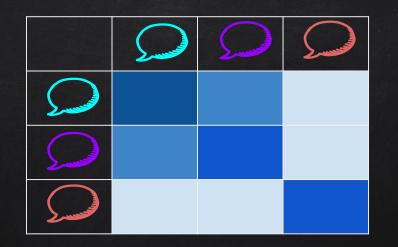
1. Pairwise evaluation



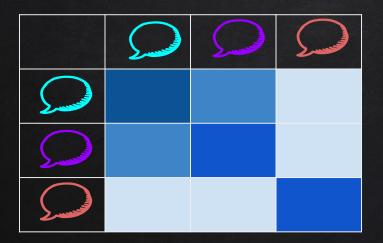
- 1. Pairwise evaluation
- 2. Voxelwise evaluation
 - IDEA: Not all voxels are related to language processing.
 Evaluate the prediction for every voxel individually.

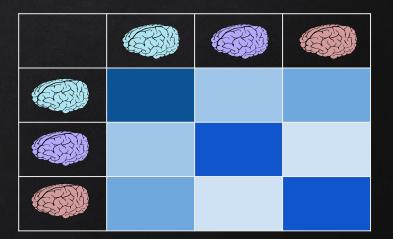
- 1. Pairwise evaluation
- 2. Voxelwise evaluation
- 3. Representational similarity analysis
 - **IDEA:** directly compare relations between stimuli No more prediction!

- 1. Pairwise evaluation
- 2. Voxelwise evaluation
- 3. Representational similarity analysis



- 1. Pairwise evaluation
- 2. Voxelwise evaluation
- 3. Representational similarity analysis





- 1. Pairwise evaluation
- 2. Voxelwise evaluation
- 3. Representational similarity analysis

EACH METHOD CAN BE REALIZED WITH DIFFERENT PARAMETERS. WE COMPARE THEIR EFFECTS.

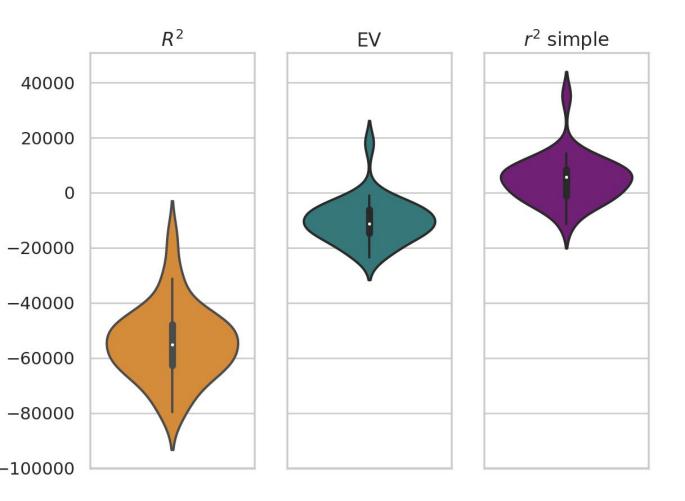
EXAMPLE PIPELINE

Set the components
mitchell_reader = WordsReader(data_dir=mitchell_dir)
mapper = RegressionMapper()
stimuli_encoder = ElmoEncoder(save_dir)
random_encoder = RandomEncoder(save_dir)

https://github.com/beinborn/brain-lang

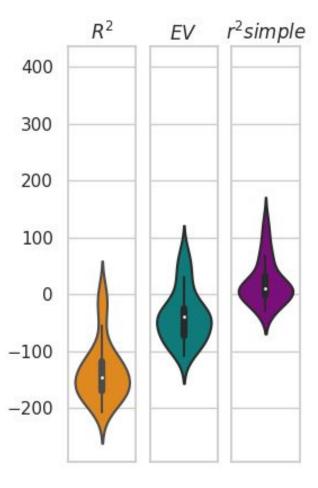
Try different language models
for encoder in [stimuli_encoder, random_encoder]:

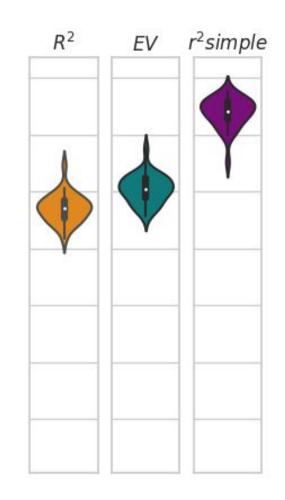
mitchell_pipeline.pairwise_procedure("Mitchell_pairwise_noVS")
mitchell_pipeline.run_standard_crossvalidation("Mitchell_CV_noVS")
mitchell_pipeline.runRSA("Mitchell_RSA")



Sum over all voxels

Voxel-wise results for the data by Dehghani et al. (2017)





Voxelwise results with selected voxels for the data by Dehghani et al. (2017)

500 on train

500 on test

So?

Language-brain encoding is hard. Many crucial design decisions: preprocessing, language model, encoding parameters, ...

- 1. Make these decisions transparent and reproducible.
- 2. Analyze your hypothesis on several datasets with the same metric.
- 3. Compare to reasonable baselines.
- 4. Do not oversell your results! A tiny signal is already impressive.

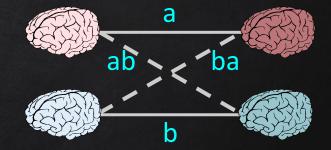
QUESTIONS?

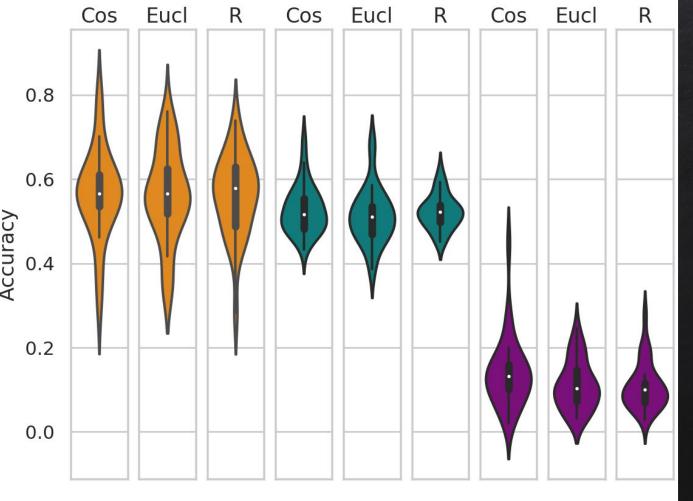
I.beinborn@uva.nl

BACK-UP SLIDES

PAIRWISE EVALUATION

Match definition: Sum: (a +b) < (ab + ba) Single: a < ab Strict: (a < ab) & (b < ba)





Results for the data by Dehghani et al. (2017)

Sum Match

Single Match

Strict Match

ACROSS DATASETS?

		Encoding Model (Random LM)						
	Match	WORDS	STORIES	ALICE	HARRY			
Cos	Sum Single Strict	.67 (.54) .60 (.53) .26 (.13)	.57 (.53) .53 (.53) .14 (.02)	.54 (.53) .53 (.51) .28 (.27)	.50 (.49) .49 (.49) .25 (.24)			

RSA RESULTS

	Words	STORIES	Alice	Harry
Pearson	0.41	0.19	0.06	0.06
Spearman	0.09	0.22	0.02	0.03

RSA RESULTS - RANDOM LM

	Words		Stories		Alice		Harry	
Pearson	0.41	0.44	0.19	0.21	0.06	0.02	0.06	0.03
Spearman	0.09	0.05	0.08	0.09	0.03	0.01	0.00	0.01